www.rssd.esa.int/index.php?project=PSA

Explore ESA's Planetary Science Archive!

The European Space Agency's Planetary Science Archive (PSA) is the central repository for all scientific and engineering data returned by ESA's Solar System missions: currently Giotto, Huygens, Mars Express, Rosetta, SMART-1, and Venus Express, as well as several ground-based cometary observations.

The PSA uses NASA's Planetary Data System standards as a baseline for the formatting and structure of all data

contained within the archive. Learn more...

Access the Data

Anonymous FTP

Get access to all publicly available data via an anonymous FTP server. Unlike the other interfaces, it has no search capability but you can quickly browse the content of the archive using the FTP-client

Browse FTP

Advanced Search

Search through a
Java-based application
which allows for complex
querying of data. You can
search at the data set or
data product level using a
wide variety of query
parameters. More...

Launch Interface

Map-based Search

Search through a
Java-based application
which allows for visual
querying of geographically
referenced data. It can be
used be in combination with
the Advanced Search
interface to refine your

Launch Interface

In addition to these interfaces, you can programmatically query and retrieve data products using the PSA Archive InterOperability (PAIO). The PAIO implements the Planetary Data Access Protocol (PDAP).

We are pleased to announce a Venus Express VIRTIS and VMC Data Workshop that will be held at ESAC (Madrid, Spain) on 12-15 May 2014.

For more details, visit the workshop's web page

LATEST NEWS

Introduction to PSA
PSA User Group
Contact Us
Data Access

FTP Browser

Map-based Search

Advanced Search

BepiColombo

Mars Express

Giotto

Huygens

Rosetta

Solar System Missions

Research & Science Home ESA Public Web Site PLANETARY SCIENCE ARCHIVE **Planetary Exploration Missions** Solar Terrestrial Science Missions Home FTP Browser Introduction to PSA **Data Set Naming** PSA User Group Please be aware that all data sets follow a Contact Us Get access to all publicly available PSA data via an anonymous FTP naming convention which typically **Data Access** server: ftp://psa.esac.esa.int/pub/mirror. Unlike the other indicates the mission, target body, FTP Browser interfaces, it has no search capability but you can quickly browse the instrument, and data processing level. Map-based Search This allows experienced users to quickly content of the archive using the FTP-client application of your choice. If Advanced Search find the data set(s) they are looking for. Solar System Missions you don't know which data sets you are looking for, we recommend BepiColombo using the Advanced or Map-based Search Interfaces FTP Access Giotto Huygens Mars Express **EARTH-BASED HUYGENS** GIOTTO MEX ROSETTA Rosetta Mars Advanced Radar for Subsurface and Ionosphere SMART-1 Sounding (MARSIS) Venus Express **Mars Express Orbiter Data** Principal Investigator(s): Ancillary Data Analyser of Space Plasmas and Energetic Atoms (ASPERA-3) Maps of Mars High Resolution Stereo Camera (HRSC) Tools Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) · G. Picardi (Universita di Roma 'La Sapienza', Rome, Documentation Mars Express Orbiter Radio Science (MRS) Italy) Workshops Observatoire pour la Mineralogie, l'Eau, les Glaces et l'Activite (OMEGA) R. Orosei (IAPS, Rome, Italy) • Planetary Fourier Spectrometer (PFS) Restricted Items J. Plaut (JPL, Pasadena, USA) Spectroscopy for Investigation of Characteristics of the Atmosphere of Mars IT Services Document Portal **Ancillary Data** My Portal Please acknowledge the above Principal Investigator(s) as Restricted Access Logon SPICE Repository well as the European Space Agency when making a publication Username: SPICE PDS Data Set using the data you are going to download. Password: ESOC Ancillary Information

Browse FTP

Visit the mission page for more information

Login Reset

Lost Username/Password

GO

Restricted Search (Guest)

http://jmars.mars.asu.edu/

SPACE FUGHT FACULTY AS STRATE EXPLORATION

SHARAD

SHARAD: S_00134001

Image Identification	
Orbit Number	1340
Product Creation time	2014-01-13 19:55:17
Start Time	2006-11-08 20:53:59.986
Image Acquisition Parameters	
Line Samples	1398
Lines	3600
Ancillary Parameters	
Subspacecraft Latitude Start	-82.45211
Subspacecraft Latitude Stop	-85.40773
Subspacecraft Longitude Start	21.578163
Subspacecraft Longitude Stop	255.17575
Image Min/Max	
Mars Radius Maximum	3378.436
Mars Radius Minimum	3378.71
Radial Velocity Maximum	5.2318
Radial Velocity Minimum	-1.4184
Signal Phase Distortian Maximum	0
Signal Phase Distortian Minimum	0
Solar Zenith Angle Maximum	114.51
Solar Zenith Angle Minimum	108
Spacecraft Radius Maximum	3627.136
Spacecraft Radius Minimum	3626.725
Tangent Velocity Maximum	3457

Full Image

SHARAD

About SHARAD

SHARAD (Shallow Radar) looks for liquid or frozen water in the first few hundreds of feet (up to 1 kilometer) of Mars' crust. SHARAD probes the subsurface using radar waves within a 15- to 25-megahertz frequency band to get the desired, high-depth resolution. The radar wave return, which is captured by the SHARAD antenna, is sensitive to changes in the electrical reflection characteristics of rock, sand, and any water that may be present in the surface and subsurface. Water, like high-density rock, is highly conducting, and has a very strong radar return. Changes in the reflection characteristics of the subsurface, caused by layers deposited by geological processes in the ancient history of Mars, are also visible. The instrument has a horizontal resolution of between 0.3 and 3 kilometers (between two-tenths of a mile and almost 2 miles) and a vertical resolution of 15 meters (about 50 feet) in free space, which translates