

CRISM 2012 Data Users' Workshop

MTRDR Data Analysis Walk-Through

K. Seelos, D. Buczkowski, F. Seelos, S. Murchie, and the CRISM SOC JHU/APL

- Familiarize CRISM data users with the new MTRDR data set and products.
- Learn how to...
 - open and browse files
 - create and analyze spectra
 - create custom visualization products
- All material provided online as a take-home exercise.

Outline

1. Basics

- 1. CRISM Analysis Toolkit (CAT) installation
- 2. Opening and displaying an MTRDR spectral cube
- 3. Displaying spectra
- 4. Opening and displaying an MTRDR summary parameter cube
- 5. Linking and browsing

2. Spectral Analysis

- 1. Selecting a region of interest (ROI)
- 2. Calculating statistics
- 3. Enhancing features
- 4. Interpretation

3. Visualization

- 1. Custom RGB products
- 2. 3-Dimensional views
- 3. Mosaicking

Walk-Through Section 1

BASICS

CRISM Analysis Toolkit (CAT)

- The CRISM Analysis Toolkit (CAT) is a series of custom IDL procedures packaged as a plug-in to ENVI, a proprietary remote sensing software available through ITT Exelis.
- To download and install the CAT, go to http://pds-geosciences.wustl.edu/missions/mro/crism.htm

 You will need CAT Version 7.0 or better to utilize the MTRDRs and related data products.

Opening an MTRDR cube

- Start IDL/ENVI, with CRISM Analysis Toolkit (CAT) installed
- On the main menu bar, go to >CAT >Open CRISM File

Initial Display of MTRDR cube

- Any image cube is initially opened in ENVI in a cluster of 3 windows.
 - Scroll (shows full spatial extent)
 - Image (full spatial resolution)
 - Zoom (4x resolution subset)
- Red box in the Scroll window shows location of Image window; red box in the Image window shows location of Zoom window.
- HINT: For CRISM images, it is usually helpful to maximize the Image window, after which the Scroll window is no longer needed (see next slide).

Image Band 304,G:Band 122,B:Band 41):F 🔘 🙆 Overlay Enhance Tools Window Zoom X (a) #1 Scroll (0.32364 (b) (a) ◎ 💢 ○ #1 Zoon 🕢 🙈

Default RGB Stretch for MTRDR

Change Zoom window size or magnification level, or turn crosshairs on here

- The default bands for an MTRDR are
 - R: Band 304 (2529.51 nm)
 - G: Band 122 (1329.21 nm)
 - B: Band 41 (768.40 nm)
- Equivalent to TAN browse product
- All bands are listed in the Available Bands List and you can load any combination.
- By default, ENVI applies a 2% Linear stretch to each band independently; a 1% Linear stretch is shown at left.

Displaying a MTRDR Spectrum

From the Image window menu, >Tools >Profiles >Z Profile (Spectrum)

Colored vertical lines on spectral plot indicate RGB wavelength positions – can adjust, reload new combination in Image window.

Adjusting the Spectral Plot

Go to >Edit >Plot Parameters to set the x- and y-axis ranges, change plot labels, colors, etc.

 HINT: Leaving this dialog box open will keep the axis range from changing as you browse the scene.

Go to >Options >Set Z Profile Avg Window to change the number of pixels averaged together for the displayed spectrum.

Anatomy of a MTRDR Spectrum

CRISM Opening an MTRDR Summary Parameter cube

Same procedure as before... On the main menu bar, go to >CAT

>Open CRISM File

Choose *SU*J_MTR3.IMG file and click OK

R770 loaded by default

All SU bands (parameters) displayed in **Available Bands** List

Load Band | Display #7▶

SU MTRDR: Single Band Display

 Load the D2300 parameter: from Available Bands List, right click on D2300 and select Load Band to New Display

 Default Linear 2% stretch includes unrealistic parameter values less than zero

CRISM SU MTRDR: Apply Appropriate Stretch

- For most band depth and similar measures of absorption,
 - Zero is the minimum realistic value
 - The 99th percentile is typically a good maximum, although there is a empirically-determined "minimum maximum" that varies by parameter (e.g., 0.02 for D2300)
- From Image window, go to >Enhance >Interactive Stretching

Type min and max values or slide dashed bars until at correct percentile values (will display along bottom)

If needed, modify the histogram binning and range under >Options >Histogram Parameters

CRISM SU MTRDR: D2300 Display Comparison

Default Stretch (-0.006 to 0.022)

Optimized Stretch, Grayscale (0.0 to 0.027)

Optimized Stretch, Blue-Red Color Ramp (0.0 to 0.027)

To apply color ramp, go to >Tools >Color Mapping > ENVI Color Tables

SU MTRDR: RGB Display and Stretch

- Load PHY from Available Bands
 List: >Select RGB Color >click on
 D2300, BD2210, and BD1900 to fill
 in RGB fields >New Display from
 drop-down >Load RGB
- Optimize stretch of each band from Image window: >Enhance
 Interactive Stretching

PHY
Browse
Product
Result:

D2300

Min: 0.003 (distribution peak)

Max: 0.028 (99th percentile)

BD2210

Min: 0.001 (distribution peak)

Max: 0.020 ("minimum maximum")

BD1900

Min: 0.014 (distribution peak)

Max: 0.046 (99th percentile)

Other Browse Products for 94F6

FEM

R: BD530

G: SH600

B: BD11000VIS

MAF

R: OLINDEX2

G: LCPINDEX

B: HCPINDEX

HYD

R: SINDEX

G: BD2100

B: BD1900

CRISM Linking Spectral and Summary Parameter Cubes

- From <u>either</u> Image window, >Tools >Link then one of
 - >Link Displays for pixel-location based link (requires exactly same size images; allows blinking and transparency), -OR-
 - Seographic Link for map projected link (can be different spatial coverage or resolutions)

Walk-Through Section 2 SPECTRAL ANALYSIS

Spectral Analysis Methods

- In general, there are 3 steps to spectral analysis:
 - 1. Locate interesting material(s)
 - Summary parameters are a good start
 - 2. Collect best possible spectra (scene "endmembers")
 - Pixel average, Region of Interest (ROI), etc.
 - 3. Interpret endmember spectra
 - E.g., comparison to laboratory mineral spectra
- This is what ENVI is designed to do...
 - There are many analysis tools/options available within the ENVI software environment.
 - Not all of them work well with CRISM data.

CRISM Pixel-based Endmember Extraction (1/2)

• As an example, let's find an endmember spectrum for the D2300-bearing material in FRT000094F6.

- D2300
 - Load D2300 as single band and stretch to emphasize highest realistic D2300 values.
 - Link D2300 with MTRDR spectral cube and PHY browse (optional, but useful)

Nominal Stretch (0.0 to 0.022)

Emphasized Stretch (0.04 to 0.05)

Spectral Cube **RGB**

PHY Browse

CRISM Pixel-based Endmember Extraction (2/2)

- From the linked spectral cube Image window, extract a Z-profile (Spectrum)
- In the spectral plot window
 - Go to >Edit >Plot Parameters to adjust y-axis (65535 values skew the range)
 - Right click anywhere to view Plot Key and set Z-profile Avg Window to 3x3 pixels
 - Preserve this spectrum for later use under >Options >New Window: with Plots...

Spectral Cube RGB

CRISM ROI-based Endmember Extraction (1/3)

Hide ROIs Show ROIS

Select All

- Create a Region of Interest (ROI) from the highest D2300 values throughout the scene
- In the spectral cube Image window, go to >Overlay > Region of Interest
 - In the ROI Tool, >Options >Band Threshold to ROI
 - Select the D2300 band from the SU MTRDR file
 - Type in min and max values of 0.04 and 0.05, respectively
 - Should get a result of 198 pixels
 - May want to refine threshold range to get fewer pixels

CRISM ROI-based Endmember Extraction (2/3)

- The ROI appears as red pixels in the displayed window
- In the ROI Tool, calculate the average of the pixels by clicking >Stats

- Right click within the Stats Results plot area to adjust Plot Parameters and view Plot Key
- Mean spectrum to the previously-created spectral plot containing the pixel-based endmember spectrum

CRISM ROI-based Endmember Extraction (3/3)

A third method would be to define a polygon ROI...

- In the ROI Tool, select >ROI_Type >Polygon
- Create New Region and select Zoom as the active window

- right click to finalize
- X #1 Zoon A ⊗

- Calculate statistics on the polygon-ROI as before
- The polygon ROI can be used alone or (e.g.) to spatially constrain the band threshold

ROI: >ROI Tool > Options

>Intersect Regions

CRISM Example Endmember Spectra – D2300

- Four D2300 spectra were extracted using the methods discussed in previous slides: 1) 3x3 pixel average, 2) band threshold, 3) polygon, and 4) band threshold-polygon intersection.
- In this scene, there are no huge differences between the spectra.
- In general, more pixels = less spectral noise.

#1 X:540 Y:540 [3x3 AVG]

Mean: Thresh [Red] 198 points

Mean: Region #2 [Green] 301 points

Mean: Thresh [Red] 198 points AND Region #2 [Green] 301 points [Blue] 93 points

Enhancing Spectral Features

- There are two widely accepted ways to enhance spectral features to aid with interpretation:
 - Ratio to a spectrally neutral area in the same scene
 - Continuum removal
- Benefit to using a ratio is that you may cancel out detector noise or spikes
- However, if your denominator spectrum is not truly neutral you may introduce unintended spectral shape, e.g., from:
 - Broad features from mafics like olivine or pyroxene
 - Spectral slope
 - VNIR variability from ferric oxide-related features
- Continuum removal is not recommended over the entire CRISM wavelength range, either
 - Best results when focused on relatively narrow range bracketing the feature(s) of interest

Ratioing (1/2)

Numerator: let's use the D2300 spectrum with the least noise
 the average from the green polygon ROI.

Denominator: Create a similar-sized polygon in the nearby spectrally bland dark material and calculate its average

spectrum

From the ENVI main menu, go to >Basic Tools > Spectral Math

- Enter the expression: s1/s2
- Map the numerator (s1) and denominator (s2) to the Available Spectra List
- Output to New Window

Ratioing (2/2)

Continuum Removal (1/2)

- Examine 3 wavelength regions independently: ~1.4, ~1.9, and ~2.3 μm.
- In >Edit >Plot Parameters, subset the x-axis range to bracket the feature of interest
- Then choose Plot_Function > Continuum Removed as the display method
- You will likely have to rescale the y-axis in the continuum removed-plot

The 1.4 band is better-emphasized by the ratio!

Continuum Removal (2/2)

Spectral Libraries

mro/spectral_library.htm

Save spectra as ENVI spectral libraries (*.sli), or export as ASCII text file

Spectral Math

Spectral Resampling

- From a spectral plot window, >File >Save Plot As> Spectral Library
- HINT: Line colors are not preserved; make sure you rename the spectra appropriately

Interpretation

Diagnostic bands match best with nontronite.

- Compare the enhanced spectra to laboratory reference spectra to locate the best mineralogic match(es).
- For the D2300 endmember example, open a library containing phyllosilicate spectra and load candidate reference spectra to examine absorption band positions in detail...

Interpretation Guidelines

- Common sense rules apply to spectral interpretation:
 - All major absorption features in the spectrum of the proposed reference mineral should be present or otherwise accounted for
 - Relative strengths and shapes of spectral features of the proposed reference mineral should be replicated in the CRISM spectrum
- Even a single CRISM pixel (~20m) is unlikely to comprise a single pure mineral, i.e.,
 - Spatial mixing is likely
 - Intimate mixtures can also occur
 - Geochemically intermediate phases are also possible
- So, simple explanations are usually best, but complexity happens. It's real geology, after all!

Walk-Through Section 3

VISUALIZATION

Custom Composites

 Custom RGB composites and browse products can take advantage the joined nature of the MTRDR summary parameter cube.

- Example at right shows ferric, ferrous, and clay variability.
- MANY color units to follow-up on!!

3-D Rendering (1/3)

- 3-D visualization can be helpful for understanding relationships between different units.
- First, open the map projected DDR cube (*DE*L_MTR1.IMG) and load the Elevation band

 Highest resolution MOLA gridded data is oversampled to match CRISM spatial scale; co-registration is good but interpolation in

sparse areas can lead to feature mismatch

 Note the approximate elevation range under >Enhance >Interactive Stretching (you'll need this later)

- Load and stretch the band or RGB composite that you want to view in 3D
- From the Image window, go to >Tools >3D Surface View

DEM min plot value

DEM max plot value

♦ Full ♦ Other

Vertical Exaggeration 5.0 💠

High Resolution Texture Mapping || Dn

Spatial Subset | Full Scene

Cancel Help

💢 🕢 3D SurfaceView Input Parameters 🕢 🛆

Resampling: • Nearest Neighbor • Aggregate

-3000

-2000

Image Resolution

DEM Resolution

□ 128 □ 256 □ 512 □ Full □ Other

3-D Rendering (2/3)

- In the 3D SurfaceView Input dialog
 - Indicate Full DEM Resolution
 - Type in min and max elevation values that bracket the actual range
 - Indicate Full Image Resolution

Initial 3D view

3-D Rendering (3/3)

- Use mouse buttons to navigate, or use >Options >Surface Controls
- Perspective view here is looking south (5x vertical exaggeration)
- Note that the lowest point for the western crater (right side, arrows) is offset from the crater's center due to sparseness of the interpolated MOLA tracks

Mosaicking (1/4)

- Mosaicking multiple CRISM cubes together allows broader geographic context for inferred mineralogy.
 - Can mosaic map-projected spectral, summary parameter, or DDR cubes
- MTRDR empirical correction of scene-specific geometric dependencies greatly improves mosaicking results.

Mosaicking (2/4)

- In the Mosaic dialog box, go to >Import
 >Import Files and Edit Properties
 - Select the two cubes you wish to mosaic
 - For each file, indicate a Data Ignore Value of 65535 and Mosaic Display of Gray Scale, Band 1 (you can change this later).

Mosaicking (3/4)

- You should see the indicated band (1: R770) appear in the mosaic window for each cube.
- To save, go to >File >Apply
 - Indicate filename and

include a background value of 65535.

To adjust layering order or edit display properties, right click on filename here

Mosaicking (4/4)

- Load a mosaic just like any other file
- Go to >File >Edit ENVI
 Header to set Data
 Ignore Value (65535)
 and reapply band
 names if desired
- TAN browse product at right →
 - No histogram matching
 - Some seams
 visible, and a few
 pixel offset on
 slopes where the
 MOLA shape model
 is perhaps
 inadequate

More Mosaic Results

- PHY browse product →
- Some parameters mosaic better than others due to the nature of their formulation
 - More noise is
 apparent in
 FRT00021BCB
 (right image) as a
 result of the 125K
 detector
 temperature

R: D2300 G: BD2210 B:BD1900

QUESTIONS?

Please also visit the PDS forum:

http://geoweb.rsl.wustl.edu/community/index.php?/

forum/20-mrocrism-data-users-workshop-2012/